Accéder au contenu
MilliporeSigma

Small-angle X-ray scattering of calpain-5 reveals a highly open conformation among calpains.

Journal of structural biology (2016-07-31)
Lokesh Gakhar, Alexander G Bassuk, Gabriel Velez, Saif Khan, Jing Yang, Stephen H Tsang, Vinit B Mahajan
RÉSUMÉ

Calpain-5 is a calcium-activated protease expressed in the retina. Mutations in calpain-5 cause autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM#193235). The structure of calpain-5 has not been determined, thus hindering the investigation of its proteolytic targets and pathological role in ADNIV. Herein, we report models of the proteolytic core of calpain-5 (mini-calpain-5) containing two globular domains (termed DIIa-IIb) connected by a short, flexible linker, consistent with small-angle X-ray scattering (SAXS) data. Structural modeling in the absence of calcium suggests that mini-calpain-5 adopts a more open conformation when compared to previously determined structures of other calpain cores. This open conformation, achieved by a rotation of DIIa and DIIb with respect to each other, prevents formation of the active site and constrains the enzyme in an inactivated form. The relative domain rotation of 60-100° we found for mini-calpain-5 (a non-classical calpain) is significantly greater than the largest rotation previously observed for a classical calpain (i.e., 55.0° for mini-calpain-9). Together with our prediction that, in the full-length form, a long loop in DIIb (loop C1), a few residues downstream of the inter-domain linker, likely interacts with the shorter, acidic, inactivating loop on domain-III (DIII), these structural insights illuminate the complexity of calpain regulation. Moreover, our studies argue that pursuing higher resolution structural studies are necessary to understand the complex activity regulation prevalent in the calpain family and for the design of specific calpain inhibitors.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Maltose solution, BioReagent, for molecular biology, ~20% in H2O