Accéder au contenu
MilliporeSigma

Functional expression of the extracellular calcium sensing receptor (CaSR) in equine umbilical cord matrix size-sieved stem cells.

PloS one (2011-03-26)
Nicola Antonio Martino, Anna Lange-Consiglio, Fausto Cremonesi, Luisa Valentini, Michele Caira, Antonio Ciro Guaricci, Barbara Ambruosi, Raffaele Luigi Sciorsci, Giovanni Michele Lacalandra, Stephan Joel Reshkin, Maria Elena Dell'Aquila
RÉSUMÉ

The present study investigates the effects of high external calcium concentration ([Ca(2+)](o)) and the calcimimetic NPS R-467, a known calcium-sensing receptor (CaSR) agonist, on growth/proliferation of two equine size-sieved umbilical cord matrix mesenchymal stem cell (eUCM-MSC) lines. The involvement of CaSR on observed cell response was analyzed at both the mRNA and protein level. A large (>8 µm in diameter) and a small (<8 µm) cell line were cultured in medium containing: 1) low [Ca(2+)](o) (0.37 mM); 2) high [Ca(2+)](o) (2.87 mM); 3) NPS R-467 (3 µM) in presence of high [Ca(2+)](o) and 4) the CaSR antagonist NPS 2390 (10 µM for 30 min.) followed by incubation in presence of NPS R-467 in medium with high [Ca(2+)](o). Growth/proliferation rates were compared between groups. In large cells, the addition of NPS R-467 significantly increased cell growth whereas increasing [Ca(2+)](o) was not effective in this cell line. In small cells, both higher [Ca(2+)](o) and NPS R-467 increased cell growth. In both cell lines, preincubation with the CaSR antagonist NPS 2390 significantly inhibited the agonistic effect of NPS R-467. In both cell lines, increased [Ca(2+)](o) and/or NPS R-467 reduced doubling time values.Treatment with NPS R-467 down-regulated CaSR mRNA expression in both cell lines. In large cells, NPS R-467 reduced CaSR labeling in the cytosol and increased it at cortical level. In conclusion, calcium and the calcimimetic NPS R-467 reduce CaSR mRNA expression and stimulate cell growth/proliferation in eUCM-MSC. Their use as components of media for eUCM-MSC culture could be beneficial to obtain enough cells for down-stream purposes.