Accéder au contenu
MilliporeSigma

Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering.

Journal of biomedical nanotechnology (2012-04-21)
K C Kavya, Rachna Dixit, R Jayakumar, Shantikumar V Nair, Krishna Prasad Chennazhi
RÉSUMÉ

Chitosan, a natural polymer, is a biomaterial which is known to be osteoconductive but lacking in mechanical strength. In this work, to further enhance the mechanical property and biocompatibility of chitosan, we combined it with both chondroitin sulfate, a natural glycosaminoglycan found in bone, and nano-SiO2. The composite scaffold of chitosan/chondroitin sulfate/nano-SiO2 was fabricated by lyophilization. The nanocomposite scaffold showed enhanced porosity, degradation, mechanical integrity, biomineralization and protein adsorption. Biocompatibility and cell attachment-proliferation studies performed using MG-63 cells, advocate its better performance in vitro. To improve the cell seeding efficiency, we coated the scaffold surface with fibrin, which enhanced the initial cell attachment. The cumulative results suggest this novel nanocomposite scaffold to be a suitable candidate for bone tissue engineering.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Silice, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
Silica, nanoparticle dispersion in water, <50 nm (DLS), triethoxylpropylaminosilane functionalized
Sigma-Aldrich
Silica, nanoparticle dispersion in water, <30 nm (DLS), triethoxylpropylaminosilane functionalized