Accéder au contenu
MilliporeSigma

Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation.

Inflammation research : official journal of the European Histamine Research Society ... [et al.] (2013-01-31)
Jing Qiao, Li-hui Xu, Jian He, Dong-yun Ouyang, Xian-hui He
RÉSUMÉ

Cucurbitacin E (CuE), a triterpenoid compound isolated from Cucurbitaceae plants, possesses a wide range of biological activities including anti-inflammatory properties. The present study aimed to investigate the anti-inflammatory effect of CuE and the underlying mechanism of action. The anti-inflammatory effect of CuE was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Cell proliferation was assessed using a modified MTT assay. Cell cycle distribution was analyzed by propidium iodide staining. The actin cytoskeleton was examined by immunofluorescent staining. The expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β was determined by intracellular cytokine staining. G-actin level and nuclear factor (NF)-κB nuclear translocation were detected by immunoblotting. CuE inhibited cell proliferation and induced cell cycle arrest at G2/M phase in RAW 264.7 cells. CuE also suppressed LPS-induced cell spreading and pseudopodia formation. These effects were associated with decreased G-actin level and severe actin aggregation. Moreover, CuE significantly inhibited both TNF-α and IL-1β production in LPS-stimulated RAW 264.7 cells. This was likely mediated by suppressing LPS-induced nuclear translocation of NF-κB, a critical transcription factor responsible for pro-inflammatory cytokine expression. CuE displayed anti-inflammatory effects through suppression of NF-κB nuclear translocation leading to a decreased expression of TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Cucurbitacin E, ≥95% (HPLC)