Accéder au contenu
MilliporeSigma

Identification of residues in the drug-binding site of human P-glycoprotein using a thiol-reactive substrate.

The Journal of biological chemistry (1998-01-24)
T W Loo, D M Clarke
RÉSUMÉ

We identified a thiol-reactive compound, dibromobimane (dBBn), that was a potent stimulator (8.2-fold) of the ATPase activity of Cys-less P-glycoprotein. We then used this compound together with cysteine-scanning mutagenesis to identify residues in transmembrane segment (TM) 6 and TM12 that are important for function. TM6 and TM12 lie close to each other in the tertiary structure and are postulated to be important for drug-protein interactions. The majority of P-glycoprotein mutants containing a single cysteine residue retained substantial amounts of drug-stimulated ATPase activity and were not inhibited by dBBn. The ATPase activities of mutants L339C, A342C, L975C, V982C, and A985C, however, were markedly inhibited (>60%) by dBBn. The drug substrates verapamil, vinblastine, and colchicine protected these mutants against inhibition by dBBn, suggesting that these residues are important for interaction of substrates with P-glycoprotein. We previously showed that residues Leu339, Ala342, Leu975, Val982, and Ala985 lie along the point of contact between helices TM6 and TM12, when both are aligned in a left-handed coiled coil (Loo, T. W., and Clarke, D. M. (1997) J. Biol. Chem. 272, 20986-20989). Taken together, these results suggest that the interface between TM6 and TM12 likely forms part of the potential drug-binding pocket in P-glycoprotein.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Dibromobimane, BioReagent, suitable for fluorescence, ≥95.0% (CHN)