Accéder au contenu
MilliporeSigma

Oxygen-dependent DNA damage amplification involving 5,6-dihydrothymidin-5-yl in a structurally minimal system.

Journal of the American Chemical Society (2001-07-18)
K A Tallman, M M Greenberg
RÉSUMÉ

5,6-Dihydrothymidin-5-yl (1) was independently generated in a dinucleotide from a phenyl selenide precursor (4). Under free radical chain propagation conditions, the products resulting from hydrogen atom donation and radical-pair reaction are the major observed products in the absence of O(2). The stereoselectivity of the trapping process is dependent on the structure of the hydrogen atom donor. No evidence for internucleotidyl hydrogen atom abstraction by 1 was detected. The tandem lesion (17) resulting from hydrogen atom abstraction from the C1' position of the adjacent 2'-deoxyuridine by the peroxyl radical derived from 1 (3) is observed under aerobic conditions. The structure of this product is confirmed by independent synthesis and its transformation into a second independently synthesized product (24). Internucleotidyl hydrogen atom abstraction is effected selectively by the 5S-diastereomer of the peroxyl radical. The formation of dinucleotide 17 provides further support for the novel O(2)-dependent DNA damage amplification mechanism involving 1 reported previously (Greenberg, M. M.; et al. J. Am. Chem. Soc. 1997, 119, 1828).