Accéder au contenu
MilliporeSigma

Effects of chronic exposure to radiofrequency electromagnetic fields on energy balance in developing rats.

Environmental science and pollution research international (2012-11-13)
Amandine Pelletier, Stéphane Delanaud, Pauline Décima, Gyorgy Thuroczy, René de Seze, Matteo Cerri, Véronique Bach, Jean-Pierre Libert, Nathalie Loos
RÉSUMÉ

The effects of radiofrequency electromagnetic fields (RF-EMF) on the control of body energy balance in developing organisms have not been studied, despite the involvement of energy status in vital physiological functions. We examined the effects of chronic RF-EMF exposure (900 MHz, 1 V m(-1)) on the main functions involved in body energy homeostasis (feeding behaviour, sleep and thermoregulatory processes). Thirteen juvenile male Wistar rats were exposed to continuous RF-EMF for 5 weeks at 24 °C of air temperature (T a) and compared with 11 non-exposed animals. Hence, at the beginning of the 6th week of exposure, the functions were recorded at T a of 24 °C and then at 31 °C. We showed that the frequency of rapid eye movement sleep episodes was greater in the RF-EMF-exposed group, independently of T a (+42.1 % at 24 °C and +31.6 % at 31 °C). The other effects of RF-EMF exposure on several sleep parameters were dependent on T a. At 31 °C, RF-EMF-exposed animals had a significantly lower subcutaneous tail temperature (-1.21 °C) than controls at all sleep stages; this suggested peripheral vasoconstriction, which was confirmed in an experiment with the vasodilatator prazosin. Exposure to RF-EMF also increased daytime food intake (+0.22 g h(-1)). Most of the observed effects of RF-EMF exposure were dependent on T a. Exposure to RF-EMF appears to modify the functioning of vasomotor tone by acting peripherally through α-adrenoceptors. The elicited vasoconstriction may restrict body cooling, whereas energy intake increases. Our results show that RF-EMF exposure can induce energy-saving processes without strongly disturbing the overall sleep pattern.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Prazosin hydrochloride, ≥99.0% (HPLC)