Accéder au contenu
MilliporeSigma

Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion.

Eukaryotic cell (2012-07-04)
Natsuko Miura, Aya Kirino, Satoshi Endo, Hironobu Morisaka, Kouichi Kuroda, Masahiro Takagi, Mitsuyoshi Ueda
RÉSUMÉ

Glycolytic enzymes are cytosolic proteins, but they also play important extracellular roles in cell-cell communication and infection. We used Saccharomyces cerevisiae to analyze the secretory pathway of some of these enzymes, including enolase, phosphoglucose isomerase, triose phosphate isomerase, and fructose 1,6-bisphosphate aldolase. Enolase, phosphoglucose isomerase, and an N-terminal 28-amino-acid-long fragment of enolase were secreted in a sec23-independent manner. The enhanced green fluorescent protein (EGFP)-conjugated enolase fragment formed cellular foci, some of which were found at the cell periphery. Therefore, we speculated that an overview of the secretory pathway could be gained by investigating the colocalization of the enolase fragment with intracellular proteins. The DsRed-conjugated enolase fragment colocalized with membrane proteins at the cis-Golgi complex, nucleus, endosome, and plasma membrane, but not the mitochondria. In addition, the secretion of full-length enolase was inhibited in a knockout mutant of the intracellular SNARE protein-coding gene TLG2. Our results suggest that enolase is secreted via a SNARE-dependent secretory pathway in S. cerevisiae.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Phosphoglucose Isomerase from baker′s yeast (S. cerevisiae), Type III, ammonium sulfate suspension, ≥400 units/mg protein (biuret)
Sigma-Aldrich
Phosphoglucose Isomerase from rabbit muscle, Type XI, lyophilized powder, ≥200 units/mg protein
Sigma-Aldrich
Phosphoglucose Isomerase from Bacillus stearothermophilus, lyophilized powder, 300-1,000 units/mg protein
Supelco
Phosphoglucose Isomerase from baker′s yeast (S. cerevisiae), for use with Fructose Assay Kit FA-20