Accéder au contenu
MilliporeSigma

Amperometric glucose biosensor based on electroconductive hydrogels.

Talanta (2012-12-04)
Christian N Kotanen, Chaker Tlili, Anthony Guiseppi-Elie
RÉSUMÉ

Fabrication of an enzyme amperometric biosensor for glucose via electropolymerization of pyrrole in the presence of glucose oxidase onto a hydrogel coated platinum electrode is hereby established as a viable biotransducer fabrication method. Platinum micro- (φ=25 μm) and macro- (φ=100 μm) electrodes were electrochemically activated and chemically modified with 3-aminopropyl-trimethoxysilane (APTMS), functionalized with acryloyl(polyethyleneglycol)-N-hydroxysuccinamide (ACRL-PEG-NHS), dipped into a polyHEMA based hydrogel cocktail and UV cross-linked. Electropolymerization of Py in the presence of GOx produced glucose responsive biotransducers that showed; (i) a 4-fold reduction in sensitivity compared with directly electropolymerized PPy films, (ii) an electropolymerization charge density dependence of biotransducer sensitivity and enzyme activity that was maximal at 1.0 mC/cm(2) with an apparent K(M) of 33 mM, (iii) interference screening of ascorbic acid and (iv) a temporal increase in sensitivity with storage over a 17 days period. This method has the ability to precisely and quantitatively add enzyme catalytic bioactivity to metal or semiconductor biointerfaces for applications in biosensors, bioelectronics and bionics.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Glucose oxydase from Aspergillus niger, Type X-S, lyophilized powder, 100,000-250,000 units/g solid (without added oxygen)
Sigma-Aldrich
Glucose oxydase from Aspergillus niger, Type VII, lyophilized powder, ≥100,000 units/g solid (without added oxygen)