Accéder au contenu
MilliporeSigma

Imbalanced unfolded protein response signaling contributes to 1-deoxysphingolipid retinal toxicity.

Nature communications (2023-07-12)
Jessica D Rosarda, Sarah Giles, Sarah Harkins-Perry, Elizabeth A Mills, Martin Friedlander, R Luke Wiseman, Kevin T Eade
RÉSUMÉ

The accumulation of atypical, cytotoxic 1-deoxysphingolipids (1-dSLs) has been linked to retinal diseases such as diabetic retinopathy and Macular Telangiectasia Type 2. However, the molecular mechanisms by which 1-dSLs induce toxicity in retinal cells remain poorly understood. Here, we integrate bulk and single-nucleus RNA-sequencing to define biological pathways that modulate 1-dSL toxicity in human retinal organoids. Our results demonstrate that 1-dSLs differentially activate signaling arms of the unfolded protein response (UPR) in photoreceptor cells and Müller glia. Using a combination of pharmacologic activators and inhibitors, we show that sustained PERK signaling through the integrated stress response (ISR) and deficiencies in signaling through the protective ATF6 arm of the UPR are implicated in 1-dSL-induced photoreceptor toxicity. Further, we demonstrate that pharmacologic activation of ATF6 mitigates 1-dSL toxicity without impacting PERK/ISR signaling. Collectively, our results identify new opportunities to intervene in 1-dSL linked diseases through targeting different arms of the UPR.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
ISRIB, ≥98% (HPLC)
Sigma-Aldrich
Anticorps anti-α-tubuline monoclonal antibody produced in mouse, clone B-5-1-2, purified from hybridoma cell culture
Sigma-Aldrich
IRE1 Inhibitor III, 4μ8C, IRE1 Inhibitor III, CAS 14003-96-4, is a cell-permeable. Covalent inhibitor of IRE1 RNase activity (IC₅₀ = 550 and 45 nM, respectively, with 0 & 16 min preincubation in RNA cleavage assays).
Sigma-Aldrich
IRE1 Inhibitor I, STF-083010, The IRE1 Inhibitor I, STF-083010 controls the biological activity of IRE1. This small molecule/inhibitor is primarily used for Biochemicals applications.