Accéder au contenu
MilliporeSigma

Nerve growth factor and its receptor tyrosine kinase TrkA are overexpressed in cervical squamous cell carcinoma.

FASEB bioAdvances (2020-07-18)
Sam Faulkner, Nathan Griffin, Christopher W Rowe, Phillip Jobling, Janine M Lombard, Sonia M Oliveira, Marjorie M Walker, Hubert Hondermarck
RÉSUMÉ

Nerve growth factor (NGF) and its receptors are increasingly implicated in cancer progression, but their expression in cervical cancer is unclear. The objective of this study was to define the protein expression of NGF, its precursor (proNGF), as well as their receptors, the tyrosine kinase receptor TrkA, the common neurotrophin receptor p75NTR and the pro-neurotrophin receptor sortilin in cervical cancer. Immunohistochemistry was performed in a cohort of cervical cancers (n = 287), including the two major subtypes of the disease: squamous cell carcinomas (SCC) and adenocarcinomas (AC). Normal cervical tissues (n = 28) were also analyzed. Protein expression was determined by computer-based digital quantification of staining intensity and comparative statistical analyses were made with clinicopathological parameters including histological subtype, age, grade, tumor size, lymph node invasion, and stage. The expression of NGF, proNGF, TrkA, p75NTR, and sortilin was higher in cervical cancer compared to normal cervical tissues. NGF and TrkA were found overexpressed in SCC compared to AC (P = .0006 and P < .0001, respectively). The expression of NGF (P = .0053), proNGF (P = .0022), and p75NTR (P = .0002), but not that of TrkA or sortilin, was associated with increasing grade in SCC. In addition, nerve infiltration into the tumor microenvironment was assessed using the pan-neuronal marker PGP9.5. Infiltrating nerves were detected in 27% of cervical tumors and expressed TrkA. Functional investigations using the HELA cervical cancer cell line indicated that the Trk tyrosine kinase inhibitor GNF-5837 reduced cell viability through decreased ERK1/2 activation. Together, these data reveal the overexpression of NGF and TrkA in cervical SCC, suggesting a potential therapeutic value of targeting the NGF-TrkA signaling pathway in this subtype of cervical cancer.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti--actine antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Nerve Growth Factor Antibody, pro, serum, Chemicon®