Accéder au contenu
MilliporeSigma

Bacterial cell cycle control by citrate synthase independent of enzymatic activity.

eLife (2020-03-10)
Matthieu Bergé, Julian Pezzatti, Víctor González-Ruiz, Laurence Degeorges, Geneviève Mottet-Osman, Serge Rudaz, Patrick H Viollier
RÉSUMÉ

Proliferating cells must coordinate central metabolism with the cell cycle. How central energy metabolism regulates bacterial cell cycle functions is not well understood. Our forward genetic selection unearthed the Krebs cycle enzyme citrate synthase (CitA) as a checkpoint regulator controlling the G1→S transition in the polarized alpha-proteobacterium Caulobacter crescentus, a model for cell cycle regulation and asymmetric cell division. We find that loss of CitA promotes the accumulation of active CtrA, an essential cell cycle transcriptional regulator that maintains cells in G1-phase, provided that the (p)ppGpp alarmone is present. The enzymatic activity of CitA is dispensable for CtrA control, and functional citrate synthase paralogs cannot replace CitA in promoting S-phase entry. Our evidence suggests that CitA was appropriated specifically to function as a moonlighting enzyme to link central energy metabolism with S-phase entry. Control of the G1-phase by a central metabolic enzyme may be a common mechanism of cellular regulation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Banque de métabolites pour spectrométrie de masse, Supplied by IROA Technologies