Accéder au contenu
MilliporeSigma

Electrochemical detection of quorum sensing signaling molecules by dual signal confirmation at microelectrode arrays.

Analytical chemistry (2011-02-18)
Eva Baldrich, Francesc Xavier Muñoz, Cristina García-Aljaro
RÉSUMÉ

n-Acyl homoserine lactones (AHLs) are produced by gram-negative bacteria to regulate gene expression in a cell density dependent manner. For instance, expression of virulence factors by pathogens such as Pseudomonas aeruginosa is induced only when a threshold concentration of AHLs is reached, which indicates that the bacterial population is big enough to promote infection. In this study, the indicator strain Agrobacterium tumefaciens NTL4 (pZLR4), which carries a β-galactosidase (β-gal) reporter gene under the control of a quorum sensing promoter, was used to develop an electrochemical biosensor to detect AHLs using the model n-(3-oxo)-dodecanoyl-L-homoserine lactone (oxo-C12-HSL), an AHL previously detected in cystic fibrosis patients infected with P. aeruginosa. The substrate 4-aminophenyl β-D-galactopyranoside was used to detect β-gal activity by cyclic voltammetry. Furthermore, simultaneous monitoring of substrate consumption and p-aminophenol production by β-gal allowed on-chip result verification by dual-signal confirmation. The sensor exhibited high reproducibility and accurately detected oxo-C12-HSL in a low picomolar to low nanomolar range in spiked liquid cultures and artificial saliva, as well as AHLs naturally released by P. aeruginosa in culture supernatants. Moreover, detection took just 2 h, required no sample pretreatment or preconcentration steps, and was easier and faster than traditional methods.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
4-Aminophenyl β-D-galactopyranoside, ≥98% (TLC), β-galactosidase substrate