Accéder au contenu
MilliporeSigma

Neuronal profilins in health and disease: Relevance for spine plasticity and Fragile X syndrome.

Proceedings of the National Academy of Sciences of the United States of America (2016-03-10)
Kristin Michaelsen-Preusse, Sabine Zessin, Gayane Grigoryan, Franziska Scharkowski, Jonas Feuge, Anita Remus, Martin Korte
RÉSUMÉ

Learning and memory, to a large extent, depend on functional changes at synapses. Actin dynamics orchestrate the formation of synapses, as well as their stabilization, and the ability to undergo plastic changes. Hence, profilins are of key interest as they bind to G-actin and enhance actin polymerization. However, profilins also compete with actin nucleators, thereby restricting filament formation. Here, we provide evidence that the two brain isoforms, profilin1 (PFN1) and PFN2a, regulate spine actin dynamics in an opposing fashion, and that whereas both profilins are needed during synaptogenesis, only PFN2a is crucial for adult spine plasticity. This finding suggests that PFN1 is the juvenile isoform important during development, whereas PFN2a is mandatory for spine stability and plasticity in mature neurons. In line with this finding, only PFN1 levels are altered in the mouse model of the developmental neurological disorder Fragile X syndrome. This finding is of high relevance because Fragile X syndrome is the most common monogenetic cause for autism spectrum disorder. Indeed, the expression of recombinant profilins rescued the impairment in spinogenesis, a hallmark in Fragile X syndrome, thereby linking the regulation of actin dynamics to synapse development and possible dysfunction.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-Fragile X Mental Retardation Protein Antibody, clone 1C3, ascites fluid, clone 1C3, Chemicon®
Sigma-Aldrich
Anti-Profilin 1 (C-terminal) antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution