Accéder au contenu
MilliporeSigma

Activation of targeted necrosis by a p53 peptide: a novel death pathway that circumvents apoptotic resistance.

The Journal of biological chemistry (2007-07-20)
Richard D Dinnen, Lisa Drew, Daniel P Petrylak, Yuehua Mao, Nicholas Cassai, Joseph Szmulewicz, Paul Brandt-Rauf, Robert L Fine
RÉSUMÉ

Cancer cells escape apoptosis by intrinsic or acquired mechanisms of drug resistance. An alternative strategy to circumvent resistance to apoptosis could be through redirection into other death pathways, such as necrosis. However, necrosis is a nonspecific, nontargeted process resulting in cell lysis and inflammation of both cancer and normal cells and is therefore not a viable alternative. Here, we report that a C-terminal peptide of p53, called p53p-Ant, induced targeted necrosis only in multiple mutant p53 human prostate cancer lines and not normal cells, because the mechanism of cytotoxicity by p53p-Ant is dependent on the presence of high levels of mutant p53. Topotecan- and paclitaxel-resistant prostate cancer lines were as sensitive to p53p-Ant-induced targeted necrosis as parental lines. A massive loss of ATP pools and intracellular generation of reactive oxygen species was involved in the mechanism of targeted necrosis, which was inhibited by O(2)(.) scavengers. We hypothesize that targeted necrosis by p53p-Ant is dependent on mutant p53, is mediated by O(2)(.) loss and ATP, and can circumvent chemotherapy resistance to apoptosis. Targeted necrosis, as an alternative pathway for selective killing of cancer cells, may overcome the problems of nonspecificity in utilizing the necrotic pathway.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-p53 Antibody, clone PAb421, clone PAb421, from mouse