Accéder au contenu
MilliporeSigma

Brain TACE (Tumor Necrosis Factor-α-Converting Enzyme) Contributes to Sympathetic Excitation in Heart Failure Rats.

Hypertension (Dallas, Tex. : 1979) (2019-06-04)
Yang Yu, Yiling Cao, Balyssa Bell, Xiaolei Chen, Robert M Weiss, Robert B Felder, Shun-Guang Wei
RÉSUMÉ

TNF-α (tumor necrosis factor-α) is initially synthesized as a transmembrane protein that is cleaved by TACE (TNF-α-converting enzyme) to release soluble TNF-α. The elevated level of TNF-α in the brain and circulation in heart failure (HF) suggests an increase in the TACE-mediated ectodomain shedding process. The present study sought to determine whether TACE is upregulated in cardiovascular/autonomic brain regions like subfornical organ and hypothalamic paraventricular nucleus in rats with ischemia-induced HF and whether TACE plays a role in TNF-α-driven sympathetic excitation. We found that TACE was expressed throughout the subfornical organ and paraventricular nucleus, with significantly higher levels in HF than in sham-operated (Sham) rats. Intracerebroventricular injection of recombinant TACE induced a mild increase in blood pressure, heart rate, and renal sympathetic nerve activity that peaked at 15 to 20 minutes in both Sham and HF rats. HF rats had a secondary prolonged increase in these variables that was prevented by the TNF-α inhibitor SPD304. Intracerebroventricular administration of the TACE inhibitor TNF-alpha protease inhibitor 1 decreased blood pressure, heart rate, and renal sympathetic nerve activity in Sham and HF rats, with an exaggerated reduction in heart rate and renal sympathetic nerve activity in the HF rats. Direct microinjection of TACE or TNF-alpha protease inhibitor 1 into paraventricular nucleus or subfornical organ of Sham and HF rats elicited blood pressure, heart rate, and renal sympathetic nerve activity responses similar to intracerebroventricular TACE or TNF-alpha protease inhibitor 1. Intracerebroventricular infusion of Ang II (angiotensin II) and IL (interleukin)-1β increased TACE expression in subfornical organ and paraventricular nucleus of normal rats. These data suggest that a TACE-mediated increase in soluble TNF-α in the brain contributes to sympathetic excitation in HF.