Accéder au contenu
MilliporeSigma

The cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach.

The Journal of physiology (2018-02-13)
Tae Sik Sung, Sung Jin Hwang, Sang Don Koh, Yulia Bayguinov, Lauen E Peri, Peter J Blair, Timothy I Webb, David M Pardo, Jason R Rock, Kenton M Sanders, Sean M Ward
RÉSUMÉ

Enteric neurotransmission is essential for gastrointestinal (GI) motility, although the cells and conductances responsible for post-junctional responses are controversial. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1), was expressed by intramuscular interstitial cells of Cajal (ICC-IM) in proximal stomach and not resolved in smooth muscle cells (SMCs). Cholinergic nerve fibres were closely apposed to ICC-IM. Conductances activated by cholinergic stimulation in isolated ICC-IM and SMCs were determined. A CaCC was activated by carbachol in ICC-IM and a non-selective cation conductance in SMCs. Responses to cholinergic nerve stimulation were studied. Excitatory junction potentials (EJPs) and mechanical responses were evoked in wild-type mice but absent or greatly reduced with knockout/down of Ano1. Drugs that block Ano1 inhibited the conductance activated by carbachol in ICC-IM and EJPs and mechanical responses in tissues. The data of the present study suggest that electrical and mechanical responses to cholinergic nerve stimulation are mediated by Ano1 expressed in ICC-IM and not SMCs. Enteric motor neurotransmission is essential for normal gastrointestinal (GI) motility. Controversy exists regarding the cells and ionic conductance(s) that mediate post-junctional neuroeffector responses to motor neurotransmitters. Isolated intramuscular ICC (ICC-IM) and smooth muscle cells (SMCs) from murine fundus muscles were used to determine the conductances activated by carbachol (CCh) in each cell type. The calcium-activated chloride conductance (CaCC), anoctamin-1 (Ano1) is expressed by ICC-IM but not resolved in SMCs, and CCh activated a Cl- conductance in ICC-IM and a non-selective cation conductance in SMCs. We also studied responses to nerve stimulation using electrical-field stimulation (EFS) of intact fundus muscles from wild-type and Ano1 knockout mice. EFS activated excitatory junction potentials (EJPs) in wild-type mice, although EJPs were absent in mice with congenital deactivation of Ano1 and greatly reduced in animals in which the CaCC-Ano1 was knocked down using Cre/loxP technology. Contractions to cholinergic nerve stimulation were also greatly reduced in Ano1 knockouts. SMCs cells also have receptors and ion channels activated by muscarinic agonists. Blocking acetylcholine esterase with neostigmine revealed a slow depolarization that developed after EJPs in wild-type mice. This depolarization was still apparent in mice with genetic deactivation of Ano1. Pharmacological blockers of Ano1 also inhibited EJPs and contractile responses to muscarinic stimulation in fundus muscles. The data of the present study are consistent with the hypothesis that ACh released from motor nerves binds muscarinic receptors on ICC-IM with preference and activates Ano1. If metabolism of acetylcholine is inhibited, ACh overflows and binds to extrajunctional receptors on SMCs, eliciting a slower depolarization response.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
5-Nitro-2-(3-phenylpropylamino)benzoic acid, ≥98%