Skip to Content
MilliporeSigma
  • Terminal-Selective Transesterification of Chlorine-Capped Poly(Methyl Methacrylate)s: A Modular Approach to Telechelic and Pinpoint-Functionalized Polymers.

Terminal-Selective Transesterification of Chlorine-Capped Poly(Methyl Methacrylate)s: A Modular Approach to Telechelic and Pinpoint-Functionalized Polymers.

Journal of the American Chemical Society (2016-04-05)
Yusuke Ogura, Takaya Terashima, Mitsuo Sawamoto
ABSTRACT

Terminal-selective transesterification of chlorine-capped poly(methyl methacrylate)s (PMMA-Cl) with alcohols was developed as a modular approach to create telechelic and pinpoint-functionalized polymers. Being sterically less hindered and electronically activated, both the α-end ethyl ester and ω-end methyl ester of PMMA-Cl were efficiently and selectively transesterified with diverse alcohols in the presence of a titanium alkoxide catalyst, while retaining the pendent esters intact, to almost quantitatively give various chlorine-capped telechelic PMMAs. In sharp contrast to conventional telechelic counterparts, the telechelic polymers obtained herein yet carry a chlorine atom at the ω-terminal to further work as a macroinitiator in living radical polymerization. The iterative process of living radical polymerization and terminal-selective transesterification successfully afforded unique pinpoint-functionalized polymers where a single functional monomer unit was introduced into the desired site of the polymer chains.