Skip to Content
MilliporeSigma
  • 3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.

3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.

Small (Weinheim an der Bergstrasse, Germany) (2015-10-21)
Manuela Loeblein, Asaf Bolker, Siu Hon Tsang, Nurit Atar, Cecile Uzan-Saguy, Ronen Verker, Irina Gouzman, Eitan Grossman, Edwin Hang Tong Teo
ABSTRACT

Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(pyromellitic dianhydride-co-4,4′-oxydianiline), amic acid solution, 15.0-16.0 wt. % in NMP