Skip to Content
MilliporeSigma

Impurity profiling of ibandronate sodium by HPLC-CAD.

Journal of pharmaceutical and biomedical analysis (2015-06-21)
Oliver Wahl, Ulrike Holzgrabe
ABSTRACT

The modern bisphosphonate drug ibandronate sodium, a challenging candidate for impurity profiling, was analyzed using high performance liquid chromatography (HPLC) combined with corona charged aerosol detection (CAD). Separation was achieved on a mixed mode column combining hydrophobic C18 and strong anion exchange retention mechanisms using a mass spectrometer compatible volatile mobile phase consisting of trifluoroacetic acid and acetonitrile while gradient elution was applied. The method was validated following the ICH guideline Q2(R1) and found suitable for the assessment of ibandronate's related substances. The observed CAD-response for all identified impurities was linear (R(2)>0.995) over a small concentration range (0.05-0.25) and a quantification limit of at least 0.03% was found. Four batches of two different manufacturers were tested by means of the method. None of the batches contained a single impurity above 0.05%. The major impurities of all batches were the synthesis by-products N-desmethyl- and N-despentyl ibandronate as well as N,N-dimethyl pamidronate.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Sodium phosphate monobasic-16O4, 99.9 atom % 16O
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methylamine solution, 33 wt. % in absolute ethanol ((denatured with 1% toluene))
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Methylamine solution, 2.0 M in methanol
Sigma-Aldrich
Methylamine solution, 2.0 M in THF
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Methylamine solution, 40 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free