Skip to Content
MilliporeSigma
  • The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo.

The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo.

Molecular cancer therapeutics (2015-10-24)
Heather Venant, Mehrdad Rahmaniyan, E Ellen Jones, Ping Lu, Michael B Lilly, Elizabeth Garrett-Mayer, Richard R Drake, Jacqueline M Kraveka, Charles D Smith, Christina Voelkel-Johnson
ABSTRACT

Despite recent advances in the development of novel therapies against castration-resistant prostate cancer, the advanced form of the disease remains a major treatment challenge. Aberrant sphingolipid signaling through sphingosine kinases and their product, sphingosine-1-phosphate, can promote proliferation, drug resistance, angiogenesis, and inflammation. The sphingosine kinase 2 inhibitor ABC294640 is undergoing clinical testing in cancer patients, and in this study we investigated the effects this first-in-class inhibitor in castration-resistant prostate cancer. In vitro, ABC294640 decreased prostate cancer cell viability as well as the expression of c-Myc and the androgen receptor, while lysosomal acidification increased. ABC294640 also induced a greater than 3-fold increase in dihydroceramides that inversely correlated with inhibition of dihydroceramide desaturase (DEGS) activity. Expression of sphingosine kinase 2 was dispensable for the ABC294640-mediated increase in dihydroceramides. In vivo, ABC294640 diminished the growth rate of TRAMP-C2 xenografts in syngeneic hosts and elevated dihydroceramides within tumors as visualized by MALDI imaging mass spectroscopy. The plasma of ABC294640-treated mice contained significantly higher levels of C16- and C24:1-ceramides (but not dihydro-C16-ceramide) compared with vehicle-treated mice. In summary, our results suggest that ABC294640 may reduce the proliferative capacity of castration-resistant prostate cancer cells through inhibition of both sphingosine kinase 2 and dihydroceramide desaturase, thereby providing a foundation for future exploration of this small-molecule inhibitor for the treatment of advanced disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Rapamycin, Ready Made Solution, 2.5 mg/mL in DMSO (2.74 mM), from Streptomyces hygroscopicus
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Trifluoroacetic acid, ≥99%, for protein sequencing
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
2,5-Dihydroxybenzoic acid, matrix substance for MALDI-MS, >99.0% (HPLC)
Sigma-Aldrich
L-(−)-Glucose, ≥99%
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
2,5-Dihydroxybenzoic acid, 98%