Skip to Content
MilliporeSigma
  • Otx2 is a target of N-myc and acts as a suppressor of sensory development in the mammalian cochlea.

Otx2 is a target of N-myc and acts as a suppressor of sensory development in the mammalian cochlea.

Development (Cambridge, England) (2015-07-15)
Victor Vendrell, Iris López-Hernández, María Beatriz Durán Alonso, Ana Feijoo-Redondo, Gina Abello, Héctor Gálvez, Fernando Giráldez, Thomas Lamonerie, Thomas Schimmang
ABSTRACT

Transcriptional regulatory networks are essential during the formation and differentiation of organs. The transcription factor N-myc is required for proper morphogenesis of the cochlea and to control correct patterning of the organ of Corti. We show here that the Otx2 gene, a mammalian ortholog of the Drosophila orthodenticle homeobox gene, is a crucial target of N-myc during inner ear development. Otx2 expression is lost in N-myc mouse mutants, and N-myc misexpression in the chick inner ear leads to ectopic expression of Otx2. Furthermore, Otx2 enhancer activity is increased by N-myc misexpression, indicating that N-myc may directly regulate Otx2. Inactivation of Otx2 in the mouse inner ear leads to ectopic expression of prosensory markers in non-sensory regions of the cochlear duct. Upon further differentiation, these domains give rise to an ectopic organ of Corti, together with the re-specification of non-sensory areas into sensory epithelia, and the loss of Reissner's membrane. Therefore, the Otx2-positive domain of the cochlear duct shows a striking competence to develop into a mirror-image copy of the organ of Corti. Taken together, these data show that Otx2 acts downstream of N-myc and is essential for patterning and spatial restriction of the sensory domain of the mammalian cochlea.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Neurofilament 200 antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Anti-Nerve Growth Factor Receptor Antibody, p75, serum, Chemicon®