Skip to Content
MilliporeSigma
  • RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin.

RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin.

Plant science : an international journal of experimental plant biology (2014-12-03)
Lijuan Chai, Yanmei Li, Shangwu Chen, Avihai Perl, Fengxia Zhao, Huiqin Ma
ABSTRACT

Seedless varieties are of particular importance to the table-grape and raisin industries. Gibberellin (GA) application is widely used in the early stages of seedless berry development to increase berry size and economic value. However, the underlying mechanism of GA induction of berry enlargement is not well understood. Here, RNA-sequencing analysis of 'Centennial Seedless' (Vitis vinifera L.) berries treated with GA3 12 days after flowering is reported. Pair-wise comparison of GA3-treated and control samples detected 165, 444, 463 genes with an over two-fold change in expression 1, 3, and 7 days after GA3 treatment, respectively. The number of differentially expressed genes increased with time after GA3 treatment, and the differential expression was dominated by downregulation. Significantly modulated expression included genes encoding synthesis and catabolism to manage plant hormone homeostasis, hormone transporters, receptors and key components in signaling pathways; exogenous GA3 induced multipoint cross talk with auxin, cytokinin, brassinosteroid, ABA and ethylene. The temporal gene-expression patterns of cell-wall-modification enzymes, cytoskeleton and membrane components and transporters revealed a pivotal role for cell-wall-relaxation genes in GA3-induced berry enlargement. Our results provide the first sequential transcriptomic atlas of exogenous GA3-induced berry enlargement and reveal the complexity of GA3's effect on berry sizing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gibberellin, 80% gibberellin A3 basis (TLC)
Sigma-Aldrich
Gibberellic acid, 90% gibberellin A3 basis (HPLC)
Supelco
Gibberellic acid, PESTANAL®, analytical standard
Sigma-Aldrich
Gibberellic acid, suitable for plant cell culture, BioReagent, ≥90% gibberellin A3 basis (of total gibberellins.)
Sigma-Aldrich
Gibberellic acid potassium salt, suitable for plant cell culture, BioReagent, ~95%, ≥50% total GA3 basis