Skip to Content
MilliporeSigma
  • Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II.

Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II.

Molecular and cellular biology (2005-05-19)
Alicia S Chung, Ying-Jie Guan, Zheng-Long Yuan, Jorge E Albina, Y Eugene Chin
ABSTRACT

Ankyrin repeat and SOCS box (ASB) family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence of variable repeats belonging to the SOCS superfamily. While SH2-domain-bearing SOCS proteins are mainly involved in the negative feedback regulation of the protein tyrosine kinase-STAT pathway in response to a variety of cytokines, the roles of ASB family members remain largely unknown. To investigate ASB functions, we screened for ASB3-interacting factors by using antibody array technology and identified tumor necrosis factor receptor II (TNF-R2) as an ASB3 binding target. ASB3 expression and activities are required for (i) TNF-R2 ubiquitination both in vivo and in vitro, (ii) TNF-R2 proteolysis via the proteasome pathway, and (iii) the inhibition of TNF-R2-mediated Jun N-terminal protein kinase (JNK) activation. While the ankyrin repeats of ASB3 interact with the C-terminal 37 amino acids of TNF-R2, the SOCS box of ASB3 is responsible for recruiting the E3 ubiquitin ligase adaptors Elongins-B/C, leading to TNF-R2 ubiquitination on multiple lysine residues within its C-terminal region. Downregulation of ASB3 expression by a small interfering RNA inhibited TNF-R2 degradation and potentiated TNF-R2-mediated cytotoxicity. The data presented here implicate ASB3 as a negative regulator of TNF-R2-mediated cellular responses to TNF-alpha by direct targeting of TNF-R2 for ubiquitination and proteasome-mediated degradation.