Skip to Content
MilliporeSigma
  • Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia.

Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia.

Human molecular genetics (2005-10-01)
Dung Vu, Corinne Di Sanza, Dorothée Caille, Philippe de Moerloose, Holger Scheib, Paolo Meda, Marguerite Neerman-Arbez
ABSTRACT

Congenital afibrinogenemia is a rare bleeding disorder characterized by the absence in circulation of fibrinogen, a hexamer composed of two sets of three polypeptides (Aalpha, Bbeta and gamma). Each polypeptide is encoded by a distinct gene, FGA, FGB and FGG, all three clustered in a region of 50 kb on 4q31. A subset of afibrinogenemia mutations has been shown to specifically impair fibrinogen secretion, but the underlying molecular mechanisms remained to be elucidated. Here, we show that truncation of the seven most C-terminal residues (R455-Q461) of the Bbeta chain specifically inhibits fibrinogen secretion. Expression of additional mutants and structural modelling suggests that neither the last six residues nor R455 is crucial per se for secretion, but prevent protein misfolding by protecting hydrophobic residues in the betaC core. Immunofluorescence and immuno-electron microscopy studies indicate that secretion-impaired mutants are retained in a pre-Golgi compartment. In addition, expression of Bbeta, gamma and angiopoietin-2 chimeric molecules demonstrated that the betaC domain prevents the secretion of single chains and complexes, whereas the gammaC domain allows their secretion. Our data provide new insight into the mechanisms accounting for the quality control of fibrinogen secretion and confirm that mutant fibrinogen retention is one of the pathological mechanisms responsible for congenital afibrinogenemia.