Skip to Content
MilliporeSigma
  • Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds.

Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds.

Journal of hazardous materials (2009-11-17)
Chia-Chang Lin, Yu-Hong Lin, Chung-Sung Tan
ABSTRACT

The removal of CO(2) from a 10 vol% CO(2) gas by chemical absorption with 30 wt% alkanolamine solutions containing monoethanolamine (MEA), piperazine (PZ), and 2-amino-2-methyl-1-propanol (AMP) in the cross-flow rotating packed bed (RPB) was investigated. The CO(2) removal efficiency increased with rotor speed, liquid flow rate and inlet liquid temperature. However, the CO(2) removal efficiency decreased with gas flow rate. Also, the CO(2) removal efficiency was independent of inlet gas temperature. The 30 wt% alkanolamine solutions containing PZ with MEA were the appropriate absorbents compared with the single alkanolamine (MEA, AMP) and the mixed alkanolamine solutions containing AMP with MEA. A higher portion of PZ in alkanolamine solutions was more favorable to CO(2) removal. Owing to less contact time in the cross-flow RPB, alkanolamines having high reaction rates with CO(2) are suggested to be used. For the mixed alkanolamine solution containing 12 wt% PZ and 18 wt% MEA, the highest gas flow rate allowed to achieve the CO(2) removal efficiency more than 90% at a liquid flow rate of 0.54 L/min was of 29 L/min. The corresponding height of a transfer unit (HTU) was found to be less than 5.0 cm, lower than that in the conventional packed bed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Amino-2-methyl-1-propanol, BioXtra, ≥95%
Sigma-Aldrich
2-Amino-2-methyl-1-propanol, technical, ≥90% (GC)
Sigma-Aldrich
2-Amino-2-methyl-1-propanol, BioUltra, ≥99.0% (GC)
Sigma-Aldrich
2-Amino-2-methyl-1-propanol, ~5% Water, technical grade, 95%