Skip to Content
MilliporeSigma
  • Characterization of heparanase-induced phosphatidylinositol 3-kinase-AKT activation and its integrin dependence.

Characterization of heparanase-induced phosphatidylinositol 3-kinase-AKT activation and its integrin dependence.

The Journal of biological chemistry (2013-03-19)
Anjum Riaz, Neta Ilan, Israel Vlodavsky, Jin-Ping Li, Staffan Johansson
ABSTRACT

Heparanase functions as a heparan sulfate-degrading enzyme and as a ligand for an unidentified signaling receptor(s). Here, several reactions involved in the activation of the PI3K-AKT pathway by latent heparanase were characterized. Protein suppression using specific siRNAs revealed that heparanase-induced phosphorylation of AKT at Ser-473 was RICTOR-mTOR-dependent, whereas ILK and PAK1/2 were dispensable. p110α was the PI3K catalytic isoform preferred by heparanase for AKT activation and cell proliferation because the p110α inhibitor YM024 blocked these processes. Heparanase-induced AKT phosphorylation was low in mouse embryonic fibroblast cells expressing a RAS interaction-defective p110α compared with wild type cells, indicating that RAS has an important role in the PI3K-AKT activation. The response to heparanase was also inefficient in suspension cultures of several cell lines, suggesting a requirement of integrins in this pathway. Adhesion via either αVβ3 or α5β1 promoted heparanase-induced AKT phosphorylation, and a stronger effect was seen when both integrins were engaged. Simultaneous inhibition of FAK and PYK2 using a chemical inhibitor, or suppression of their expression, inhibited heparanase-induced AKT activation and cell proliferation. Stimulation of cells with heparanase enhanced their resistance against oxidative stress- or growth factor starvation-induced apoptosis. These results demonstrate that there is an intimate cross-talk between the heparanase receptor(s) and integrins during induction of the prosurvival PI3K-AKT pathway by heparanase.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-5, lyophilized powder, ≥400,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-3, aqueous solution, ≥90,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-1, partially purified powder, ≥300,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-2, aqueous solution, ≥85,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-3AF, aqueous solution, ≥60,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type HP-2S, aqueous solution, ≥90,000 units/mL
Sigma-Aldrich
β-Glucuronidase from limpets (Patella vulgata), Type L-II, lyophilized powder, 1,000,000-3,000,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type HP-2, aqueous solution, ≥100,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, ≥10,000,000 units/g protein (30 min assay), recombinant, expressed in E. coli overproducing strain, lyophilized powder
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, >20,000,000 units/g protein, recombinant, expressed in E. coli, aqueous glycerol solution
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, ≥20,000 units/mg protein, recombinant, expressed in E. coli overproducing strain, lyophilized powder
Sigma-Aldrich
β-Glucuronidase from Helix aspersa (garden snail), Type HA-4
Sigma-Aldrich
β-Glucuronidase from bovine liver, Type B-3, ≥2,000,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, Type IX-A, lyophilized powder, 1,000,000-5,000,000 units/g protein (30 min assay)
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, Type VII-A, lyophilized powder, 5,000,000-20,000,000 units/g protein, pH 6.8 (30 min assay)
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, aqueous glycerol solution, ≥5,000,000 units/g protein, pH 6.8 (biuret)
Sigma-Aldrich
β-Glucuronidase from bovine liver, Type B-1, ≥1,000,000 units/g solid
Sigma-Aldrich
Mitochondria Staining Kit, 1 kit sufficient for 40 tests (of 5 mL cell suspensions), 1 kit sufficient for 200 tests (of 1 mL cell suspensions)