- The structure and dynamics of ACTH (1-10) on the surface of a sodium dodecylsulfate (SDS) micelle: a molecular dynamics simulation study.
The structure and dynamics of ACTH (1-10) on the surface of a sodium dodecylsulfate (SDS) micelle: a molecular dynamics simulation study.
ACTH (1-10), an adrenocorticotropin hormone fragment, was studied by molecular dynamics (MD) simulation in the NPT ensemble in an explicit sodium dodecylsulfate (SDS) micelle. Initially, distance restraints derived from NMR nuclear Overhauser enhancements were incorporated during the equilibration stage of the simulation. The analyses of the trajectories from the subsequent unrestrained MD showed that ACTH (1-10) does not conform to a helical structure at the micelle-water interface; however, the structure is amphipathic. The loss of the helical structure is due to decreased intramolecular hydrogen bonding accompanied by an increase of hydrogen bonding between the amide hydrogens of the peptide and the micelle head-groups. ACTH (1-10) was found to lie on the surface of the SDS micelle. Most of the hydrophobic interactions came from the side-chains of Met-4, Phe-7 and Trp-9. The peptide bonds were either hydrated or involved in intramolecular hydrogen bonding. Decreased hydration for the backbone of His-6 and Phe-7 was due to intermolecular hydrogen bonding with the SDS head-groups. The time correlation functions of the N-H bonds of the peptide in water and in the micelle showed that the motions of the peptide, except for the N- and C-termini, are significantly reduced when partitioned in the micelle.