Skip to Content
MilliporeSigma
  • Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells.

Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells.

Biochemical and biophysical research communications (2020-10-25)
Na Hui Kim, Nam Ji Sung, Hyung-Sun Youn, Sin-Aye Park
ABSTRACT

Gremlin-1 (GREM1), one of the antagonists of bone morphogenetic proteins (BMPs), has recently been reported to be overexpressed in a variety of cancers including breast cancer. GREM1 is involved in tumor promotion, but little is known about its role in the glycolysis of cancer cells. In this study, we investigated the role of GREM1 in glycolysis of breast cancer cells and its underlying molecular mechanisms. We first observed that glucose uptake and lactate production were increased in GREM1-overexpressing breast cancer cells. GREM1 increased the expression of hexokinase-2 (HK2), which catalyzes the phosphorylation of glucose, the first step in glycolysis. In addition, GREM1 activated STAT3 transcription factor through the ROS-Akt signaling pathway. The ROS-Akt-STAT3 axis activated by GREM1 was involved in promoting glucose uptake by increasing the expression of HK2 in breast cancer cells. Therefore, our study suggested a new mechanism by which GREM1 is involved in breast cancer promotion by increasing glycolysis in breast cancer cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N-acetylcysteine amide, ≥98% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Grem1
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting human GREM1