Skip to Content
MilliporeSigma
  • Acute in vitro effects on embryonic rat dorsal root ganglion (DRG) cultures by in silico predicted neurotoxic chemicals: Evaluations on cytotoxicity, neurite length, and neurophysiology.

Acute in vitro effects on embryonic rat dorsal root ganglion (DRG) cultures by in silico predicted neurotoxic chemicals: Evaluations on cytotoxicity, neurite length, and neurophysiology.

Toxicology in vitro : an international journal published in association with BIBRA (2020-09-04)
Andrew F M Johnstone, Cina M Mack, Matthew C Valdez, Timothy J Shafer, Richard M LoPachin, David W Herr, Prasada Rao S Kodavanti
ABSTRACT

The Hard-Soft Acid and Base hypothesis can be used to predict the potential bio-reactivity (electrophilicity) of a chemical with intracellular proteins, resulting in neurotoxicity. Twelve chemicals predicted to be neurotoxic were evaluated in vitro in rat dorsal root ganglia (DRG) for effects on cytotoxicity (%LDH), neuronal structure (total neurite length/neuron, NLPN), and neurophysiology (mean firing rate, MFR). DRGs were treated acutely on days in vitro (DIV) 7 (1-100 μM) with test chemical; %LDH and NLPN were measured after 48 h. 4-cyclohexylhexanone (4-C) increased %LDH release at 50 (29%) and 100 μM (56%), citronellal (Cit) and 1-bromopropane increased %LDH at 100 μM (22% and 26%). 4-C, Cit, 2,5 Hexanedione (2,5Hex), phenylacetylaldehyde (PAA) and 2-ethylhexanal decreased mean NLPN at 48 h; 50 and 100 μM for 4-C (28% and 60%), 100 μM Cit (52%), 100 μM 2,5- Hex (37%) 100 μM PAA (41%) and 100 μM for 2-ethylhexanal (23%). Separate DRG cultures were treated on DIV 14 and changes in MFR measured. Four compounds decreased MFR at 50 or 100 μM: Acrylamide (-83%), 3,4-dichloro-1-butene (-93%), 4-C (-89%) and hexane (-79%, 50 μM). Changes in MFR and NLPN occurred in absence of cytotoxicity. While the current study showed little cytotoxicity, it gave insight to initial changes in MFR. Results provide insight for future chronic exposure experiments to evaluate neurotoxicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-tert-Butylcyclohexanone, 99%
Sigma-Aldrich
Albumin, Bovine Serum, Fraction V, Fatty Acid-Free, Nuclease- and Protease-Free, BSA Fatty Acid-free is designed for use in serological testing, RIA, and hormone response studies. Suitable for use in Molecular Biology applications, such as Northern and Southern blots.
Roche
Dispase® II (neutral protease, grade II), lyophilized, from bacterial, Roche, pkg of 5 × 1 g
Sigma-Aldrich
Laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane, 1-2 mg/mL in Tris-buffered saline, 0.2 μm filtered, BioReagent, suitable for cell culture