Skip to Content
MilliporeSigma
  • A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites.

A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites.

Nature communications (2020-06-12)
Stefan Reich, Chi D L Nguyen, Canan Has, Sascha Steltgens, Himanshu Soni, Cristina Coman, Moritz Freyberg, Anna Bichler, Nicole Seifert, Dominik Conrad, Christiane B Knobbe-Thomsen, Björn Tews, Grischa Toedt, Robert Ahrends, Jan Medenbach
ABSTRACT

Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR-mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one-carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR-driven changes to gene expression and resistance to pharmacological treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Actin antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-SLFN5 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Pd-PEPPSI-IPent catalyst, ≥95%
Sigma-Aldrich
Indole-3-acetic acid sodium salt, BioReagent, suitable for plant cell culture, ≥98%