- Oligoarginine-Bearing Tandem Repeat Penetration-Accelerating Sequence Delivers Protein to Cytosol via Caveolae-Mediated Endocytosis.
Oligoarginine-Bearing Tandem Repeat Penetration-Accelerating Sequence Delivers Protein to Cytosol via Caveolae-Mediated Endocytosis.
To facilitate the cytosolic delivery of larger molecules such as proteins, we developed a new cell-penetrating peptide sequence, named Pas2r12, consisting of a repeated Pas sequence (FFLIG-FFLIG) and d-dodeca-arginine (r12). This peptide significantly enhanced the cellular uptake and cytosolic release of enhanced green fluorescent protein and immunoglobulin G as cargos. We found that simply mixing Pas2r12 with cargos could generate cytosolic introducible forms. The cytosolic delivery of cargos by Pas2r12 was found to be an energy-requiring process, to rely on actin polymerization, and to be suppressed by caveolae-mediated endocytosis inhibitors (genistein and methyl-β-cyclodextrin) and small interfering RNA against caveolin-1. These results suggest that Pas2r12 enhances membrane penetration of cargos without the need for cross-linking and that caveolae-mediated endocytosis may be the route by which cytosolic delivery is enhanced.