Skip to Content
MilliporeSigma
  • CR6-interacting factor 1 interacts with Gadd45 family proteins and modulates the cell cycle.

CR6-interacting factor 1 interacts with Gadd45 family proteins and modulates the cell cycle.

The Journal of biological chemistry (2003-04-30)
Hyo Kyun Chung, Yong-Weon Yi, Neon-Cheol Jung, Daegun Kim, Jae Mi Suh, Ho Kim, Ki Cheol Park, Jung Hun Song, Dong Wook Kim, Eun Suk Hwang, Soo-Hyun Yoon, Young-Seuk Bae, Jin Man Kim, Insoo Bae, Minho Shong
ABSTRACT

The Gadd45 family of proteins includes Gadd45alpha, MyD118/Gadd45beta, and CR6/OIG37/Gadd45gamma. These proteins play important roles in maintaining genomic stability and in regulating the cell cycle. This study reports the cloning of a novel protein called CR6-interacting factor 1 (CRIF1) which interacts with Gadd45alpha, MyD118/Gadd45beta, and CR6/OIG37/Gadd45gamma. CRIF1 binds specifically to the Gadd45 family proteins, as determined by an in vitro glutathione S-transferase pull-down assay and an in vivo mammalian cell two-hybrid assay along with coimmunoprecipitation assays. CRIF1 mRNA is highly expressed in the thyroid gland, heart, lymph nodes, trachea, and adrenal tissues. CRIF1 localizes exclusively to the nucleus and colocalizes with Gadd45gamma. Recombinant CRIF1 inhibits the histone H1 kinase activity of immunoprecipitated Cdc2-cyclin B1 and Cdk2-cyclin E, and the inhibitory effects were additive with Gadd45 proteins. Overexpression of CRIF1 increases the percentage of cells in G1, decreases the percentage of cells in S phase, and suppresses growth in NIH3T3 cells. The down-regulation of endogenous CRIF1 by the transfection of the small interfering RNA duplexes resulted in the inactivation of Rb by phosphorylation and decreased the G1 phase cell populations. Expression of CRIF1 is barely detectable in adrenal adenoma and papillary thyroid cancer and much lower than in adjacent normal tissue. The results presented here suggest that CRIF1 is a novel nuclear protein that interacts with Gadd45 and may play a role in negative regulation of cell cycle progression and cell growth.