Skip to Content
Merck
  • Insight of EDX analysis and EFTEM: are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals?

Insight of EDX analysis and EFTEM: are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals?

Microscopy research and technique (2011-09-16)
Jean-Marie Volland, Jean-Pierre Lechaire, Ghislaine Frebourg, Dalila Aldana Aranda, Gaëlle Ramdine, Olivier Gros
ABSTRACT

Digestive tubules of Strombidae are composed by three cell types: digestive cells, vacuolated cells, and crypt cells. The last one is characterized by the presence of intracellular granules identified as spherocrystals. Such structures are known to occur in basophilic cells of gastropod digestive gland, where they are supposed to be involved in the regulation of some minerals and in detoxification. In this study, energy-dispersive X-ray analysis (EDX) and energy filtered transmission electron microscopy (EFTEM) were used to determine the elemental content of spherocrystals in two Strombidae, Strombus gigas and Strombus pugilis. In freshly collected individuals of both species, the following elements were detected: Ca, Fe, Mg, P, and Zn. Aluminum and Mn were also detected in S. gigas. Their presence in spherocrystals indicates that, in Strombidae, spherocrystals are involved in the regulation of minerals and essential trace metals. In order to answer the question "are spherocrystals involved in nonessential trace metals scavenging?," artificial cadmium and lead exposure by both waterborne and dietary pathways was applied to S. pugilis. No evidence of cadmium (Cd(NO(3))(2)) or lead (Pb(NO(3))(2)) provided by food was found in spherocrystals. Cadmium provided in water (Cd(NO(3))(2) and CdCl(2)) causes structural modifications of the digestive gland; however, this element was not trapped in spherocrystals. These results suggest that spherocrystals are not involved in detoxification of such nonessential trace metals.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cadmium nitrate tetrahydrate, 99.997% trace metals basis
Sigma-Aldrich
Cadmium standard solution, suitable for atomic absorption spectrometry, 1 mg/mL Cd+2, 1000 ppm Cd+2
Sigma-Aldrich
Cadmium nitrate tetrahydrate, 98%