- Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-α) Induced Inflammatory Response in Bovine Cells.
Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-α) Induced Inflammatory Response in Bovine Cells.
To further investigate the potential role of α-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-α as an immuno-stimulant to simulate inflammation response in cells with or without α-tocopherol pre-treatment. Using microarray global-profiling and IPA (Ingenuity Pathways Analysis, Ingenuity(®) Systems, http://www.ingenuity.com) data analysis on TNF-α-induced gene perturbation in those cells, we focused on determining whether α-tocopherol treatment of normal bovine cells in a standard cell culture condition can modify cell's immune response induced by TNF-α challenge. When three datasets were filtered and compared using IPA, there were a total of 1750 genes in all three datasets for comparison, 97 genes were common in all three sets; 615 genes were common in at least two datasets; there were 261 genes unique in TNF-α challenge, 399 genes were unique in α-tocopherol treatment, and 378 genes were unique in the α-tocopherol plus TNF-α treatment. TNF-α challenge induced significant change in gene expression. Many of those genes induced by TNF-α are related to the cells immune and inflammatory responses. The results of IPA data analysis showed that α-tocopherol-pretreatment of cells modulated cell's response to TNF-α challenge. In most of the canonical pathways, α-tocopherol pretreatment showed the antagonistic effect against the TNF-α-induced pro-inflammatory responses. We concluded that α-tocopherol pre-treatment has a significant antagonistic effect that modulates the cell's response to the TNF-α challenge by altering the gene expression activities of some important signaling molecules.