Skip to Content
Merck
  • The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain?

The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain?

Journal of neuroinflammation (2015-01-21)
Guilherme D Silva, Patrícia S S Lopes, Erich T Fonoff, Rosana L Pagano
ABSTRACT

Motor cortex stimulation (MCS) is an effective treatment in neuropathic pain refractory to pharmacological management. However, analgesia is not satisfactorily obtained in one third of patients. Given the importance of understanding the mechanisms to overcome therapeutic limitations, we addressed the question: what mechanisms can explain both MCS effectiveness and refractoriness? Considering the crucial role of spinal neuroimmune activation in neuropathic pain pathophysiology, we hypothesized that modulation of spinal astrocyte and microglia activity is one of the mechanisms of action of MCS. Rats with peripheral neuropathy (chronic nerve injury model) underwent MCS and were evaluated with a nociceptive test. Following the test, these animals were divided into two groups: MCS-responsive and MCS-refractory. We also evaluated a group of neuropathic rats not stimulated and a group of sham-operated rats. Some assays included rats with peripheral neuropathy that were treated with AM251 (a cannabinoid antagonist/inverse agonist) or saline before MCS. Finally, we performed immunohistochemical analyses of glial cells (microglia and astrocytes), cytokines (TNF-α and IL-1β), cannabinoid type 2 (CB2), μ-opioid (MOR), and purinergic P2X4 receptors in the dorsal horn of the spinal cord (DHSC). MCS reversed mechanical hyperalgesia, inhibited astrocyte and microglial activity, decreased proinflammatory cytokine staining, enhanced CB2 staining, and downregulated P2X4 receptors in the DHSC ipsilateral to sciatic injury. Spinal MOR staining was also inhibited upon MCS. Pre-treatment with AM251 blocked the effects of MCS, including the inhibitory mechanism on cells. Finally, MCS-refractory animals showed similar CB2, but higher P2X4 and MOR staining intensity in the DHSC in comparison to MCS-responsive rats. These results indicate that MCS induces analgesia through a spinal anti-neuroinflammatory effect and the activation of the cannabinoid and opioid systems via descending inhibitory pathways. As a possible explanation for MCS refractoriness, we propose that CB2 activation is compromised, leading to cannabinoid resistance and consequently to the perpetuation of neuroinflammation and opioid inefficacy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP) antibody produced in mouse, clone G-A-5, ascites fluid
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
SAFC
Sodium chloride solution, 5 M
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent