- Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium.
Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium.
Carbonaceous sorbents including black carbon (BC) and carbon nanotubes have attracted research attention around the world because of their effects on bioavailability of hydrophobic organic compounds (HOCs) in sediments and soils. In this research, (14)C-labeled and unlabeled phenanthrene were spiked into three artificial sediments: (i) a sediment sample without amorphous organic carbon (OC) and with BC collected from the Yangtze River (BC-YR), (ii) a sediment without OC and with multi-walled carbon nanotubes (MWCNTs), and (iii) a sediment without OC and with fresh wood char. Biodegradation and mineralization of adsorbed phenanthrene by Agrobacterium and XAD-2 assisted abiotic desorption of adsorbed phenanthrene were studied. The results showed that microbes could utilize a fraction of adsorbed phenanthrene by BC and MWCNTs after aging for 21-40d. With aging for 28d, the biodegradation efficiencies of phenanthrene after incubation for 21d were 83.8%, 73.5% and 54.2% for BC-YR, char and MWCNTs, respectively; with aging for 40d, the mineralization rates of (14)C-labeled phenanthrene after incubation for 25d were 38.3%, 25.1% and 24.6%, respectively. The desorption and biodegradation processes showed similar residual concentration of phenanthrene. However, the biodegradation rates were higher than the desorption rates during the fast biodegradation stage, suggesting that bacteria could promote desorption or access and utilize the sorbed phenanthrene. The biodegradation and mineralization efficiencies of phenanthrene associated with MWCNTs were significantly lower than with BC (p<0.01), implying adsorption by MWCNTs may lead to a greater decrease of HOCs bioavailability in the environment.