Skip to Content
Merck
  • MMD-associated RNF213 SNPs encode dominant-negative alleles that globally impair ubiquitylation.

MMD-associated RNF213 SNPs encode dominant-negative alleles that globally impair ubiquitylation.

Life science alliance (2022-02-10)
Abhishek Bhardwaj, Robert S Banh, Wei Zhang, Sachdev S Sidhu, Benjamin G Neel
ABSTRACT

Single-nucleotide polymorphisms (SNPs) in RNF213, which encodes a 591-kD protein with AAA+ ATPase and RING E3 domains, are associated with a rare, autosomal dominant cerebrovascular disorder, moyamoya disease (MMD). MMD-associated SNPs primarily localize to the C-terminal region of RNF213, and some affect conserved residues in the RING domain. Although the autosomal dominant inheritance of MMD could most easily explained by RNF213 gain-of-function, the type of ubiquitylation catalyzed by RNF213 and the effects of MMD-associated SNPs on its E3 ligase activity have remained unclear. We found that RNF213 uses the E2-conjugating enzymes UBE2D2 and UBE2L3 to catalyze distinct ubiquitylation events. RNF213-UBED2 catalyzes K6 and, to a lesser extent, K48-dependent poly-ubiquitylation in vitro, whereas RNF213-UBE2L3 catalyzes K6-, K11-, and K48-dependent poly-ubiquitylation events. MMD-associated SNPs encode proteins with decreased E3 activity, and the most frequent MMD allele, RNF213 R4810K , is a dominant-negative mutant that decreases ubiquitylation globally. By contrast, MMD-associated RNF213 SNPs do not affect ATPase activity. Our results suggest that decreased RNF213 E3 ligase activity is central to MMD pathogenesis.

MATERIALS
Product Number
Brand
Product Description

Millipore
Anti-FLAG® M2 Magnetic Beads, affinity isolated antibody
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)