Skip to Content
Merck
  • Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.

Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.

Cell reports (2018-11-01)
Sabine E J Tanis, Pascal W T C Jansen, Huiqing Zhou, Simon J van Heeringen, Michiel Vermeulen, Markus Kretz, Klaas W Mulder
ABSTRACT

Epidermal homeostasis requires balanced progenitor cell proliferation and loss of differentiated cells from the epidermal surface. During this process, cells undergo major changes in their transcriptional programs to accommodate new cellular functions. We found that transcriptional and post-transcriptional mechanisms underlying these changes jointly control genes involved in cell adhesion, a key process in epidermal maintenance. Using siRNA-based perturbation screens, we identified DNA and/or RNA binding regulators of epidermal differentiation. Computational modeling and experimental validation identified functional interactions between the matrin-type 2 zinc-finger protein ZMAT2 and the epigenetic modifiers ING5, SMARCA5, BRD1, UHRF1, BPTF, and SMARCC2. ZMAT2 is an interactor of the pre-spliceosome that is required to keep cells in an undifferentiated, proliferative state. RNA immunoprecipitation and transcriptome-wide RNA splicing analysis showed that ZMAT2 associates with and regulates transcripts involved in cell adhesion in conjunction with ING5. Thus, joint control by splicing regulation, histone, and DNA modification is important to maintain epidermal cells in an undifferentiated state.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Collagen Type VII Antibody, CT, clone LH7.2, ascites fluid, clone LH7.2, Chemicon®