Skip to Content
Merck
  • Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily impairs its polysaccharide-synthesizing ability.

Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily impairs its polysaccharide-synthesizing ability.

Applied microbiology and biotechnology (2015-01-15)
Xiangfeng Meng, Justyna M Dobruchowska, Tjaard Pijning, Gerrit J Gerwig, Johannis P Kamerling, Lubbert Dijkhuizen
ABSTRACT

Glucansucrases are exclusively found in lactic acid bacteria and synthesize a variety of α-glucans from sucrose. They are large multidomain enzymes belonging to the CAZy family 70 of glycoside hydrolase enzymes (GH70). The crystal structure of the N-terminal truncated GTF180 of Lactobacillus reuteri 180 (GTF180-ΔN) revealed that the polypeptide chain follows a U shape course to form five domains, including domains A, B, and C, which resemble those of family GH13 enzymes, and two extra and novel domains (domains IV and V), which are attached to the catalytic core. To elucidate the functional roles of domain V, we have deleted the domain V fragments from both the N- and C-terminal ends (GTF180-ΔNΔV). Truncation of domain V of GTF180-ΔN yielded a catalytically fully active enzyme but with heavily impaired polysaccharide synthesis ability. Instead, GTF180-ΔNΔV produced a large amount of oligosaccharides. Domain V is not involved in determining the linkage specificity, and the size of polysaccharide produced as the polysaccharide produced by GTF180-ΔNΔV was identical in size and structure with that of GTF180-ΔN. The data indicates that GTF180-ΔNΔV acts nonprocessively, frequently initiating synthesis of a new oligosaccharide from sucrose, instead of continuing the synthesis of a full size polysaccharide. Mutations L940E and L940F in GTF180-ΔNΔV, which are involved in the acceptor substrate binding, restored polysaccharide synthesis almost to the level of GTF180-ΔN. These results demonstrated that interactions of growing glucan chains with both domain V and acceptor substrate binding sites are important for polysaccharide synthesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iodomethane-12C, ≥99.9 atom % 12C, ≥99% (CP), contains copper as stabilizer
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Iodomethane, contains copper as stabilizer, ReagentPlus®, 99%
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Iodomethane, contains copper as stabilizer, ReagentPlus®, 99.5%
Sigma-Aldrich
Iodomethane, purum, ≥99.0% (GC)
Sigma-Aldrich
Nitrilotriacetic acid, ACS reagent, ≥99.0%
Sigma-Aldrich
L-Thyroxine sodium salt pentahydrate, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Nitrilotriacetic acid trisodium salt, Sigma Grade, ≥98%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Nitrilotriacetic acid, Sigma Grade, ≥99%
Sigma-Aldrich
L-Thyroxine sodium salt pentahydrate, ≥98% (HPLC), powder
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Deuterium oxide, 70 atom % D
Sigma-Aldrich
Deuterium oxide, 60 atom % D
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)
Sigma-Aldrich
Iodomethane solution, 2.0 M in tert-butyl methyl ether, contains copper as stabilizer
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Nitrilotriacetic acid disodium salt, Sigma Grade, ≥99%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)