Skip to Content
Merck
  • Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements.

Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements.

Free radical biology & medicine (1999-10-09)
C Rota, C F Chignell, R P Mason
ABSTRACT

The oxidation of 2'-7'-dichlorofluorescin (DCFH) to the fluorescent 2'-7'-dichlorofluorescein (DCF) by horseradish peroxidase (HRP) was investigated by fluorescence, absorption, and electron spin resonance spectroscopy (ESR). As has been previously reported, HRP/H2O2 oxidized DCFH to the highly fluorescent DCF. However, DCF fluorescence was still observed when H2O2 was omitted, although its intensity was reduced by 50%. Surprisingly, the fluorescence increase, in the absence of exogenous H2O2, was still strongly inhibited by catalase, demonstrating that H2O2 was present and necessary for DCF formation. H2O2 was apparently formed during either chemical or enzymatic deacetylation of 2'-7'-dichlorofluorescin diacetate (DCFH-DA), probably by auto-oxidation. Spectrophotometric measurements clearly showed that DCFH could be oxidized either by HRP-compound I or HRP-compound II with the obligate generation of the DCF semiquinone free radical (DCF*-). Oxidation of DCF*- to DCF by oxygen would yield superoxide (O2*-). ESR spectroscopy in conjunction with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of both superoxide and hydroxyl radicals in the DCFH/H2O2/HRP system. Both radicals were also detected in the absence of added H2O2, although the intensities of the resultant adducts were decreased. This work demonstrates that DCF fluorescence cannot be used reliably to measure O2*- in cells because O2*- itself is formed during the conversion of DCFH to DCF by peroxidases. The disproportionation of superoxide forms H2O2 which, in the presence of peroxidase activity, will oxidize more DCFH to DCF with self-amplification of the fluorescence. Because the deacetylation of DCFH-DA, even by esterases, can produce H2O2, the use of this probe to measure H2O2 production in cells is problematic.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2′,7′-Dichlorofluorescein, BioReagent, suitable for fluorescence, ≥90% (T)