Skip to Content
Merck
  • Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl- channels.

Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl- channels.

The Journal of biological chemistry (2006-11-24)
Adrien Renaudo, Sébastien L'Hoste, Hélène Guizouarn, Franck Borgèse, Olivier Soriani
ABSTRACT

The sigma-1 receptor is an intracellular protein characterized as a tumor biomarker whose function remains mysterious. We demonstrate herein for the first time that highly selective sigma ligands inhibit volume-regulated chloride channels (VRCC) in small cell lung cancer and T-leukemia cells. Sigma ligands and VRCC blockers provoked a cell cycle arrest underlined by p27 accumulation. In stably sigma-1 receptor-transfected HEK cells, the proliferation rate was significantly lowered by sigma ligands when compared with control cells. Sigma ligands produced a strong inhibition of VRCC in HEK-transfected cells but not in control HEK. Surprisingly, the activation rate of VRCC was dramatically delayed in HEK-transfected cells in the absence of ligands, indicating that sigma-1 receptors per se modulate cell regulating volume processes in physiological conditions. Volume measurements in hypotonic conditions revealed indeed that the regulatory volume decrease was delayed in HEK-transfected cells and virtually abolished in the presence of igmesine in both HEK-transfected and T-leukemic cells. Moreover, HEK-transfected cells showed a significant resistance to staurosporine-induced apoptosis volume decrease, indicating that sigma-1 receptors protect cancer cells from apoptosis. Altogether, our results show for the first time that sigma-1 receptors modulate "cell destiny" through VRCC and cell volume regulation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Actin antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Monoclonal Anti-Cyclin A antibody produced in mouse, clone CY-A1, ascites fluid