Skip to Content
Merck
  • Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants.

Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants.

The Journal of oral implantology (2014-05-02)
Evsen Tamam, Ilser Turkyilmaz
ABSTRACT

Implant failure is more likely to occur in persons with medically compromising systemic conditions, such as diabetes related to high blood glucose levels and inflammatory diseases related to pH levels lower than those in healthy people. The aim of this study was to investigate the effects of lower pH level and simulated- hyperglycemia on implant corrosion as these effects are critical to biocompatibility and osseointegration. The electrochemical corrosion properties of titanium implants were studied in four different solutions: Ringer's physiological solution at pH = 7.0 and pH = 5.5 and Ringer's physiological solution containing 15 mM dextrose at pH = 7 and pH = 5.5. Corrosion behaviors of dental implants were determined by cyclic polarization test and electrochemical impedance spectroscopy. Surface alterations were studied using a scanning electron microscope. All test electrolytes led to apparent differences in corrosion behavior of the implants. The implants under conditions of test exhibited statistically significant increases in I(corr) from 0.2372 to 1.007 μAcm(-2), corrosion rates from 1.904 to 8.085 mpy, and a decrease in polarization resistances from 304 to 74 Ω. Implants in dextrose-containing solutions were more prone to corrosion than those in Ringer's solutions alone. Increasing the acidity also yielded greater corrosion rates for the dextrose-containing solutions and the solutions without dextrose.

MATERIALS
Product Number
Brand
Product Description

Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Titanium, IRMM®, certified reference material, 0.5 mm wire
Titanium, IRMM®, certified reference material, 0.5 mm foil
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Titanium, microfoil, disks, 25mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 200mm, diameter 3.0mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 9.5mm, annealed, 99.99+%
Titanium, tube, 100mm, outside diameter 1.6mm, inside diameter 1.2mm, wall thickness 0.2mm, hard, 99.6+%
Titanium, tube, 100mm, outside diameter 10.3mm, inside diameter 8.7mm, wall thickness 0.8mm, annealed, 99.6+%
Titanium, tube, 200mm, outside diameter 25.4mm, inside diameter 23.62mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, rod, 1000mm, diameter 3.0mm, annealed, 99.6+%
Titanium, mesh, 100x100mm, nominal aperture 0.19mm, wire diameter 0.23mm, 60x60 wires/inch, open area 20%, twill weave
Titanium, rod, 100mm, diameter 2mm, annealed, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.5μm, specific density 225.4μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 9.5mm, annealed, 99.99+%