Pular para o conteúdo
Merck
  • Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells.

Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells.

Cell biochemistry and function (2015-07-17)
Pelin Ozfiliz, Tugba Kizilboga, Salih Demir, Gizem Alkurt, Narçin Palavan-Unsal, Elif Damla Arisan, Gizem Dinler-Doganay
RESUMO

Bag-1, Bcl-2 associated athanogene-1, is a multifunctional protein that can regulate a wide variety of cellular processes: proliferation, cell survival, transcription, apoptosis and motility. Bag-1 interacts with various targets in the modulation of these pathways; yet molecular details of Bag-1's involvement in each cellular event are still unclear. We first showed that forced Bag-1 expression promotes cell survival and prevents drug-induced apoptosis in MCF-7 breast cancer cells. Increased mRNA expressions of c-myc protooncogene and ornithine decarboxylase (ODC), biosynthetic enzyme of polyamines, were detected in Bag-1L+ cells, and western blots against the protein product of c-Myc and ODC confirmed these findings. Once ODC, a c-Myc target, gets activated, polyamine biosynthesis increases. We observed enhanced polyamine content in the Bag-1L+ cells. On the contrary, when polyamine catabolic mechanisms were investigated, Bag-1 silencing suppressed biosynthesis of polyamines because of the downregulation of ODC and upregulation of PAO. Exposure of cells to apoptotic inducers enhances the cell death mechanism by producing toxic products such as H2 O2 and aldehydes. Bag-1L+ cells prevented drug-induced PAO activation leading to a decrease in H2 O2 production following cisplatin or paclitaxel treatment. In this line, our results suggested that Bag-1 indirectly affects cell survival through c-Myc activated signalling that causes elevation of ODC levels, leading to an increase of the polyamine content.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Álcool etílico, puro, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Iodeto de propídio, ≥94.0% (HPLC)
Sigma-Aldrich
diacetato de 2′,7′-diclorofluoresceína, ≥97%
Sigma-Aldrich
Trichloroacetic acid solution, 6.1 N
Sigma-Aldrich
Ácido tricloroacético, ACS reagent, ≥99.0%
Sigma-Aldrich
cis-Diammineplatinum(II) dichloride, crystalline
Sigma-Aldrich
Luminol, 97%
Sigma-Aldrich
Álcool etílico, puro, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Luminol, ≥97% (HPLC)
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
Ácido tricloroacético, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Ácido tricloroacético, suitable for electrophoresis, suitable for fixing solution (for IEF and PAGE gels), ≥99%
Sigma-Aldrich
cis-Diamineplatinum(II) dichloride, ≥99.9% trace metals basis
Sigma-Aldrich
Ácido tricloroacético, ≥99.0% (titration)
Sigma-Aldrich
Ácido tricloroacético, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium trichloroacetate, 97%
Sigma-Aldrich
Ácido tricloroacético, ACS reagent, for the determination of Fe in blood according to Heilmeyer, ≥99.5%
Sigma-Aldrich
trans-Platinum(II)diammine dichloride
Sigma-Aldrich
Álcool etílico, puro, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
Álcool etílico, puro, 160 proof, Excise Tax-free, Permit for use required
Sigma-Aldrich
MISSION® esiRNA, targeting human ODC1
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Slc25a21
Sigma-Aldrich
MISSION® esiRNA, targeting human BAG1
Sigma-Aldrich
MISSION® esiRNA, targeting human SLC25A21