Pular para o conteúdo
Merck

Tumor endothelial marker 7 (TEM-7): a novel target for antiangiogenic therapy.

Microvascular research (2011-10-01)
Rebecca G Bagley, Cecile Rouleau, William Weber, Khodadad Mehraein, Robert Smale, Maritza Curiel, Michelle Callahan, Andre Roy, Paula Boutin, Thia St Martin, Mariana Nacht, Beverly A Teicher
RESUMO

Antiangiogenesis has been validated as a therapeutic strategy to treat cancer, however, a need remains to identify new targets and therapies for specific diseases and to improve clinical benefit from antiangiogenic agents. Tumor endothelial marker 7 (TEM-7) was investigated as a possible target for therapeutic antiangiogenic intervention in cancer. TEM-7 expression was assessed by in situ hybridization or by immunohistochemistry (IHC) in 130 formalin-fixed paraffin-embedded (FFPE) and 410 frozen human clinical specimens of cancer plus 301 normal tissue samples. In vitro TEM-7 expression was evaluated in 4 human endothelial cell models and in 32 human cancer cell lines by RT-PCR and flow cytometry. An anti-TEM-7 antibody was tested in vitro on human SKOV3 ovarian and MDA-MB-231 breast carcinoma cells that expressed TEM-7 in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis assays. In frozen tumor tissues, TEM-7 mRNA and protein was detected in all but one of the cancer types tested and was infrequently expressed in normal frozen tissues. In FFPE tumor tissues, TEM-7 protein was detected by IHC in colon, breast, lung, bladder, ovarian and endometrial cancers and in sarcomas. TEM-7 protein was not detected in head and neck, prostate or liver cancers. TEM-7 expression was restricted to the vasculature and was absent from tumor cells. In vitro, TEM-7 was not detected in human microvascular endothelial cells (HMVEC) or human umbilical vein endothelial cells (HUVEC) but was induced in endothelial precursor/progenitor cells (EPC) in the presence of the mitogen phorbol ester PMA. An anti-TEM-7 antibody mediated ADCC and phagocytosis in SKOV3 and MDA-MB-231 cell lines infected with an adenovirus expressing TEM-7. These data demonstrate that TEM-7 is a vascular protein associated with angiogenic states. TEM-7 is a novel and attractive target for antiangiogenic therapy.