- Different biotransformation of morphine in isolated liver cells from guinea pig and rat.
Different biotransformation of morphine in isolated liver cells from guinea pig and rat.
The biotransformation of morphine was characterized in freshly isolated parenchymal and non-parenchymal liver cells from rats and guinea pigs in suspension culture to establish an in vitro model for morphine metabolism. Liver cells were prepared by a collagenase perfusion technique, and separated by differential centrifugation. Morphine metabolism was investigated at different concentrations (1, 5, 100 and 200 microM). Samples were taken repeatedly during 2-4 hr of incubation, and subsequently analysed on a HPLC system employing both UV and electrochemical detection. In suspensions of hepatocytes from both animal species morphine-3-glucuronide (M3G) was the major metabolite of morphine, and was formed at comparable rates at all concentrations examined. Guinea pig hepatocytes in addition produced considerable quantities of morphine-6-glucuronide (M6G), whereas this metabolite was detected only intracellularly in minor quantities in rat hepatocytes. The ratio between the two morphine glucuronides (M3G/M6G) in suspensions of guinea pig hepatocytes was approximately 4:1. N-Demethylation of morphine was more pronounced per mg cell protein in rat hepatocytes compared to guinea pig cells. Metabolic activity towards morphine was not detected in non-parenchymal cells of the two species. The morphine glucuronidation pattern found in guinea pig hepatocytes resembles to a greater extent than that found in rat hepatocytes the pattern found in in vivo studies of humans. It was concluded that isolated guinea pig parenchymal cells appeared to be a promising in vitro system for studies of morphine glucuronidation, and to observe metabolism in general.