Pular para o conteúdo
Merck
  • EPYLRFamide-mediated reduction of acetylcholine-induced inward currents in Helix lucorum-identified neurones: role of NAADP-dependent and IP3-dependent Ca2+ release from internal stores, calmodulin and Ca2+/calmodulin-dependent protein kinase II.

EPYLRFamide-mediated reduction of acetylcholine-induced inward currents in Helix lucorum-identified neurones: role of NAADP-dependent and IP3-dependent Ca2+ release from internal stores, calmodulin and Ca2+/calmodulin-dependent protein kinase II.

Regulatory peptides (2003-03-01)
Arkady S Pivovarov, Robert J Walker
RESUMO

The effect of seven compounds intracellularly applied by spontaneous diffusion were investigated on the EPYLRFamide-induced reduction of acetylcholine-induced inward current (ACh-current) recorded from identified neurones from Helix lucorum. Inward currents were recorded from neurones LPa2, LPa3, RPa3 and RPa2 in isolated ganglia preparations using two-electrode voltage clamp technique. ACh was applied ionophoretically. Heparin, an antagonist of IP(3) receptors (IP(3)Rs), and IP(3), the agonist of IP(3)Rs, decreased the effect of EPYLRFamide. Thio-NADP, a blocker of NAADP-induced Ca(2+) release, beta-NAADP, Ca(2+) releaser, R24571, W-7 (both calmodulin antagonists), and KN-62, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, did not change the modulatory effect of EPYLRFamide. These data suggest that EPYLRFamide decreases ACh-current through elevation of the basal intracellular level of the putative endogenous agonist of IP(3)Rs which activates release of Ca(2+) from intracellular stores. It is concluded that intracellular free Ca(2+) acts on ACh receptor/ionic channel without activation of calmodulin and Ca(2+)/calmodulin-dependent protein kinase II.