Pular para o conteúdo
Merck
  • Human Papillomaviruses Preferentially Recruit DNA Repair Factors to Viral Genomes for Rapid Repair and Amplification.

Human Papillomaviruses Preferentially Recruit DNA Repair Factors to Viral Genomes for Rapid Repair and Amplification.

mBio (2018-02-15)
Kavi Mehta, Laimonis Laimins
RESUMO

High-risk human papillomaviruses (HPVs) activate the ataxia telangiectasia mutated-dependent (ATM) DNA damage response as well as the ataxia telangiectasia mutated-dependent DNA-related (ATR) pathway in the absence of external DNA damaging agents for differentiation-dependent genome amplification. Through the use of comet assays and pulsed-field gel electrophoresis, our studies showed that these pathways are activated in response to DNA breaks induced by the viral proteins E6 and E7 alone and independently of viral replication. The majority of these virally induced DNA breaks are present in cellular DNAs and only minimally in HPV episomes. Treatment of HPV-positive cells with inhibitors of both ATM and ATR leads to the generation of DNA breaks and the fragmentation of viral episomes, indicating that DNA breaks are introduced into HPV genomes. These breaks, however, are rapidly repaired through the preferential recruitment of homologous recombination repair enzymes, such as RAD51 and BRCA1, to viral genomes at the expense of cellular DNAs. When HPV-positive cells are treated with hydroxyurea, this recruitment of RAD51 and BRCA1 to viral genomes is greatly enhanced with little recruitment to damaged cellular DNAs and with retention of the ability of viral genomes to amplify. Overall, our studies demonstrated that human papillomaviruses induce breaks into cellular and viral DNAs and that the preferential repair of these lesions in viral episomes leads to genome amplification.IMPORTANCE High-risk human papillomaviruses (HPVs) are the etiologic agents of cervical cancer and are linked to the development of many other anogenital and oropharyngeal cancers. Replication of high-risk HPVs requires the activation of the ataxia telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) DNA repair pathways. Our studies have shown that HPVs activate these pathways by inducing double-strand breaks primarily in cellular DNAs and minimally in viral genomes. Breaks are induced in viral genomes but are rapidly repaired through the preferential recruitment of homologous repair factors such as RAD51 and BRCA1 to HPV episomes. The preferential repair of breaks in viral genomes leads to amplification. Our study identified a novel mechanism by which human papillomaviruses manipulate DNA repair pathways to productively replicate viral genomes. The induction of genetic instability in cellular DNAs likely contributes to the generation of mutations that lead to the development of cancers.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Anticorpo anti-fosfohistona H2A.X (Ser139), clone JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
Anti-DNA-RNA Hybrid Antibody, clone S9.6, clone S9.6, from mouse
Sigma-Aldrich
Anti-Rad51 Antibody, clone 3C10, clone 3C10, from mouse