Skip to Content
Merck
  • A novel profibrotic mechanism mediated by TGFβ-stimulated collagen prolyl hydroxylase expression in fibrotic lung mesenchymal cells.

A novel profibrotic mechanism mediated by TGFβ-stimulated collagen prolyl hydroxylase expression in fibrotic lung mesenchymal cells.

The Journal of pathology (2015-03-18)
Yongfeng Luo, Wei Xu, Hui Chen, David Warburton, Rachel Dong, Bangping Qian, Moisés Selman, Jack Gauldie, Martin Kolb, Wei Shi
ABSTRACT

Idiopathic pulmonary fibrosis is a severe chronic lung disease with a high mortality rate. Excessive TGFβ signalling is recognized as a central player in lung fibrosis. However, the related mechanisms remain unclear. Herein we used a novel Tbx4 lung enhancer-driven Tet-On transgenic system to inhibit TGFβ signalling in mouse lung-resident mesenchymal cells at different stages of bleomycin-induced fibrosis, by conditionally knocking out TGFβ receptor II or expressing a dominant-negative TGFβ receptor II. Abrogation of mesenchymal TGFβ signalling markedly attenuated bleomycin-induced fibrotic pathology, which was independent of altered early inflammation. Furthermore, a novel TGFβ downstream target gene P4HA3 (an α-subunit of collagen prolyl hydroxylase) was identified, and its expression was significantly increased in fibroblastic foci of both bleomycin-induced fibrotic mouse lungs and idiopathic pulmonary fibrosis patients' lungs. The relationship between activated TGFβ signalling, up-regulation of P4HA3 and increased hydroxyproline/collagen production was further verified in cultured lung fibroblasts. Moreover, inhibition of collagen prolyl hydroxylase by pyridine-2,5-dicarboxylate attenuated TGFβ-stimulated collagen production in both cultured fibroblasts and bleomycin-induced mouse lung fibrosis. These data indicate that increased expression and activity of collagen prolyl hydroxylase is one of the important mechanisms underlying TGFβ-mediated profibrotic effects. Inhibition of collagen prolyl hydroxylase may be a new, promising approach for preventing and treating pulmonary fibrosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cycloheximide, Biotechnology Performance Certified
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
Sigma-Aldrich
Actinomycin D, from Streptomyces sp., ≥95% (HPLC)
Sigma-Aldrich
Actinomycin D, from Streptomyces sp., suitable for cell culture, ≥95%
Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
Actinomycin D, from Streptomyces sp., ~98% (HPLC)
Sigma-Aldrich
Pyridinium dichromate, 98%
Sigma-Aldrich
Cycloheximide solution, Ready-Made Solution, microbial, 100 mg/mL in DMSO, Suitable for cell culture
Sigma-Aldrich
MISSION® esiRNA, targeting mouse P4ha3