Skip to Content
Merck
  • Isolation and Characterization of O-methyltransferases Involved in the Biosynthesis of Glaucine in Glaucium flavum.

Isolation and Characterization of O-methyltransferases Involved in the Biosynthesis of Glaucine in Glaucium flavum.

Plant physiology (2015-08-25)
Limei Chang, Jillian M Hagel, Peter J Facchini
ABSTRACT

Transcriptome resources for the medicinal plant Glaucium flavum were searched for orthologs showing identity with characterized O-methyltransferases (OMTs) involved in benzylisoquinoline alkaloid biosynthesis. Seven recombinant proteins were functionally tested using the signature alkaloid substrates for six OMTs: norlaudanosoline 6-OMT, 6-O-methyllaudanosoline 4'-OMT, reticuline 7-OMT, norreticuline 7-OMT, scoulerine 9-OMT, and tetrahydrocolumbamine OMT. A notable alkaloid in yellow horned poppy (G. flavum [GFL]) is the aporphine alkaloid glaucine, which displays C8-C6' coupling and four O-methyl groups at C6, C7, C3', and C4' as numbered on the 1-benzylisoquinoline scaffold. Three recombinant enzymes accepted 1-benzylisoquinolines with differential substrate and regiospecificity. GFLOMT2 displayed the highest amino acid sequence identity with norlaudanosoline 6-OMT, showed a preference for the 6-O-methylation of norlaudanosoline, and O-methylated the 3' and 4' hydroxyl groups of certain alkaloids. GFLOMT1 showed the highest sequence identity with 6-O-methyllaudanosoline 4'OMT and catalyzed the 6-O-methylation of norlaudanosoline, but more efficiently 4'-O-methylated the GFLOMT2 reaction product 6-O-methylnorlaudanosoline and its N-methylated derivative 6-O-methyllaudanosoline. GFLOMT1 also effectively 3'-O-methylated both reticuline and norreticuline. GFLOMT6 was most similar to scoulerine 9-OMT and efficiently catalyzed both 3'- and 7'-O-methylations of several 1-benzylisoquinolines, with a preference for N-methylated substrates. All active enzymes accepted scoulerine and tetrahydrocolumbamine. Exogenous norlaudanosoline was converted to tetra-O-methylated laudanosine using combinations of Escherichia coli producing (1) GFLOMT1, (2) either GFLOMT2 or GFLOMT6, and (3) coclaurine N-methyltransferase from Coptis japonica. Expression profiles of GFLOMT1, GFLOMT2, and GFLOMT6 in different plant organs were in agreement with the O-methylation patterns of alkaloids in G. flavum determined by high-resolution, Fourier-transform mass spectrometry.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Potassium phosphate tribasic, reagent grade, ≥98%
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Sigma-Aldrich
Ammonium acetate, BioXtra, ≥98%
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Ammonium acetate, ACS reagent, ≥97%
Sigma-Aldrich
Ammonium acetate, ≥99.99% trace metals basis
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, puriss., ≥99.5% (GC), meets analytical specification of Ph. Eur., BP, USP, crystalline (detached)
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Phenol solution, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Liquified Phenol, ≥89.0%
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Phenol, for molecular biology
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%